A discrete curve-shortening equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Results of Triangles Under Discrete Curve Shortening Flow

In this paper, we analyze the results of triangles under discrete curve shortening flow, specifically isosceles triangles with top angles greater than π3 , and scalene triangles. By considering the location of the three vertices of the triangle after some small time , we use the definition of the derivative to calculate a system of differential equations involving parameters that can describe t...

متن کامل

Curve Shortening Flow in a Riemannian Manifold

In this paper, we systemally study the long time behavior of the curve shortening flow in a closed or non-compact complete locally Riemannian symmetric manifold. Assume that we have a global flow. Then we can exhibit a a limit for the global behavior of the flow. In particular, we show the following results. 1). Let M be a compact locally symmetric space. If the curve shortening flow exists for...

متن کامل

Curve Shortening and Grayson’s Theorem

In this chapter and the next we discuss the curve shortening flow (CSF). A number of important techniques in the field of geometric flows exhibit themselves in the curve shortening flow in an elegant and less technical way. The CSF was proposed in 1956 by Mullins to model the motion of idealized grain boundaries. In 1978 Brakke studied the mean curvature flow, of which the CSF is the 1-dimensio...

متن کامل

Inflection Points, Extatic Points and Curve Shortening

As the name suggests, Curve Shortening is a gradientflow for the length functional on the space of immersed curves in the surfaceM. One can therefore try to use Curve Shortening to prove existence of geodesics by variational methods. In my talk at S’Agarro I observed that geodesics always are curves without self-tangencies, and recalled that the space of such curves has many different connected...

متن کامل

Discrete Jordan Curve Theorems

There has been recent interest in combinatorial versions of classical theorems in topology. In particular, Stahl [S] and Little [3] have proved discrete versions of the Jordan Curve Theorem. The classical theorem states that a simple closed curve y separates the 2-sphere into two connected components of which y is their common boundary. The statements and proofs of the combinatorial versions in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Methods and Applications of Analysis

سال: 1997

ISSN: 1073-2772,1945-0001

DOI: 10.4310/maa.1997.v4.n2.a6